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The purpose of this paper is to develop a model for orbital resonance, both when it leads to unstable chaotic
orbits and when it leads to stable configurations. The study of resonance is a great interest in astronomy as
it can give clues to the formation of the early solar system by analyzing where certain objects are, and where
there is a characteristic lack of objects. This paper applies elementary techniques from Newtonian mechanics
to accurately and reliably predict the relative strengths of Kirkwood gaps in the main asteroid belt. It also
builds off of prior work to create a more updated and complete approximation of the liberation period in
stable resonant systems such as Saturn’s moons Titan and Hyperion.

I. INTRODUCTION

The solar system is a complex dynamic system. In
short time scales, it appears to be a reliable and pre-
dictable clockwork system. However, on the timescale of
millions of years, the pulls from even the tiniest of planets
can lead to chaotic patterns. But through this planetary
anarchy, stable patterns arise.

Orbital resonance occurs when the orbital periods of
two orbiting bodies are in the ratio of two integers. As a
result, they will exhibit periodic motion relative to each
other. Typically, gentle tugs from other planets can be
mostly ignored because the direction of the force is ran-
dom and after a very long time, the time average net
force would be zero. However in resonant orbits, even
the tiniest tugs can be amplified to large degrees as they
will always occur at the same location in each resonant
period.

One of the most well known examples are the Kirk-
wood Gaps in the asteroid belt (a list of key terms is
located in the glossary at the back). At certain semi-
major axes, their orbital frequencies will form an integer
ratio with that of Jupiter. For example, a resonant fre-
quency of 2:1 means that, for every two orbits the inner
asteroid makes, Jupiter will make one orbit. In figure 1,
selected resonant frequencies are plotted against a his-
togram showing the abundance of asteroids in the 2 au
to 2.5 au range. At these locations, there is a scarcity
of asteroids, caused by the unstable nature of these reso-
nances and will migrate away. These gaps, while clearly
noticeable, are not all the same strength. This paper
will attempt to build a model to explain these apparent
relative strengths.

This unstable resonance is caused when objects can-
not maintain a continuous resonance with other planets.
This is seen in the Kirkwood gaps as asteroids in reso-
nance with Jupiter will receive so much energy by passing
by it regularly that it will fly out of orbit. This causes
the the gaps inside the asteroid belt. Only the Trojan
Asteroids, (which are in a 1:1 ratio with Jupiter) found
at the Lagrange points of Jupiter, are able to maintain a
continuous resonance.

There are also cases in which orbital resonance leads to
stable configurations. For example, Neptune and Pluto
are locked in a 3:2 resonance. Even more striking, the

FIG. 1. A histogram of Kirkwood Gaps and the locations of
orbital resonances, plotted with Mathematica[4]

Galilean moons: Ganymede, Europa, and Io are locked
in a 1:2:4 resonance. There are many other instances of
moons and even planets in stable resonance with each
other. See table I for a list of major stable resonant
systems in our solar system.

Planet System Resonance
Jupiter Io - Europa - Ganymede 4:2:1

Saturn

Cassini Division - Mimas 2:1
Mimas - Tethys 2:1

Enceladus - Dione 2:1
Titan - Hyperion 4:3
Neptune - Pluto 3:2

TABLE I. Selected examples of resonant systems in the solar
system.[5]

II. AN ELEMENTARY MODEL

First, we shall present a simplistic model that can ex-
plain the relative strengths of the Kirkwood Gaps. Con-
sider an asteroid of mass m in a circular orbit with a
radius of r1. Moving into a frame co-rotating with the
asteroid, the net force is zero. Then, introduce Jupiter,
with mass M ≫ m, in another circular orbit with ra-
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dius r2. By Kepler’s third law, the ratio of their orbital
frequencies is given by

f1
f2

=

(
r2
r1

)3/2

=
m

n
(1)

The asteroid will experience resonance if m and n can
be expressed as relatively prime integers. For every or-
bit the asteroid makes, Jupiter will complete n/m of an
orbit. Let us assume that Jupiter and the asteroid start
off at conjunction; in other words, the three bodies are
co-linear. Every time the asteroid makes one full rev-
olution, Jupiter will cycle between m locations, equally
spaced around its orbit. We base our model on the as-
sumption:

If we superimpose the larger object at all the
locations it can be in when the smaller ob-
ject makes one full revolution starting from
conjunction, then the strength of orbital res-
onance directly depends on the average of all
the superimposed forces.

r2

r1

d

α θ

FIG. 2. The inner mass, on average, experiences an outward
radial force due to the outer mass.

By symmetry, only the radial components of the force will
show up in the average. The radial force at an arbitrary
location is:

Fr =
GMm

d2
· cos θ (2)

We have:

d =
√
r21 + r22 − 2r1r2 cosα (3)

cos θ =
r2 cosα− r1

d
(4)

Using equation 1, we can eliminate r1:

Fr =
GMm

r22

(
cosα− (n/m)2/3(

(n/m)4/3 + 1− 2(n/m)2/3 cosα
)3/2

)
(5)

The angle α can only take certain discrete values when
resonance is reached. We have:

α =
2πk

m
(6)

for 0 < k < m. Substituting this in and getting rid of
the constant, we have:

Fr ∝
cos 2πk

m − f2/3(
f4/3 + 1− 2f2/3 cos 2πk

m

)3/2 (7)

where f ≡ n
m . Taking the average of the radial forces

experienced at all m locations give us:

Fr,avg ∝ 1

m

m∑
k=1

cos 2πk
m − f2/3(

f4/3 + 1− 2f2/3 cos 2πk
m

)3/2 (8)

FIG. 3. Average force at all possible resonant frequencies
with m,n < 10. The size of the bubble represents the relative
strengths. Frequencies that are not relatively prime, or exist
outside of the main belt are not included.

The results are plotted in figure 3. The resonant fre-
quencies shown, listed from strongest to weakest are 2:1,
3:1, 5:2, 7:3, 9:4, 8:3, 4:1, 7:2. Qualitatively, they line up
with observations, as shown in figure 1; however, there
are a few discrepancies when compared to the quantita-
tive data.
The number of asteroids within a 0.05 AU range of

each Kirkwood gap was recorded and listed and sorted in
table II. While there is no direct parameter that gives the
strength of each resonant frequency, we can assume the
number of asteroids within a certain resonant frequency
is inversely proportional to the strength. We see that the
elementary model built is extremely accurate in predict-
ing the relative strengths! Everything is in the correct
order, with the exception of the 4:1 resonant frequency.
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Resonant
Frequency

Semi-major
axis (AU)

Number of
Asteroids

Superimposed Strength
(force)

4:1 2.06 29 0.39
2:1 3.27 67 3.46
3:1 2.49 459 0.94
5:2 2.82 614 0.68
7:3 2.95 752 0.56
9:4 3.02 1495 0.51
8:3 2.70 1705 0.40
7:2 2.25 2777 0.29

TABLE II. The resonant frequencies and semi-major axes of
major kirkwood gaps and the number of asteroids (±0.05 AU)
in the range, pulled from Mathematica. The average super-
imposed forced is also shown for comparison and has units
where G = M = rearth = 1

This discrepancy can be explained by considering the
effects of other planets. One peculiar interest is Earth.
It is relatively large and is quite close to this Kirkwood
gap, which roughly only 1 AU away. However, the most
important factor is that Earth is in a 12 : 1 resonant
orbital with Jupiter. Therefore, not only are asteroids
in this gap resonant with Jupiter, it is also in a 3 : 1
resonance with Earth, which we have already established
has a strong effect.

Another explanation of why observations show so little
asteroids in this region is simply because this is the lower
limit of the asteroid belt. Any asteroids that go past
this point can be strongly perturbed by the pull of Mars.
While other gaps have asteroids migrating across it from
both sides, this gap only has asteroids migrating from one
side.

III. STABLE RESONANCES

This periodic amplification can wreck havoc to objects
in a perfectly circular orbit, but it can lead to stable
resonance as well in certain cases where the orbits have
a nonzero eccentricity. This is common between different
planets and moons.

A famous example of stable resonances is found in the
moons of Saturn, or to be more specific, Hyperion and
Titan. Hyperion gains an uncertainty of 0.123ϵ in its
orbit due to the alluding orbital resonance caused from
Titan. In turn, we can see a near perfect circular orbit
produced from Titan, and an elliptical orbit created by
Hyperion. To get deeper into our analysis, let us fig-
ure out what happens at the conjunction points of our
model. If the conjunction point is located when moving
from pericenter to apocenter, Hyperion receives an out-
ward velocity component while the radial component of
Titans gravitational attraction pulls Hyperion inwards.
Because of this, Hyperion’s energy and angular momen-
tum decrease which, in turn, also decreases the semi-
major axis and period of Hyperion. This effect is also en-
hanced because the point where the pull is the strongest

Saturn

Hyperion

Titan

FIG. 4. Hyperion gains or loses angular momentum depend-
ing on the setup, which can rotate its orbit clockwise or coun-
terclockwise

is right before the conjunction point, while Titan, which
is faster, trails right behind Hyperion. As a consequence,
Hyperion speeds up, which makes the conjunction move
towards the apocenter of the orbit. Another case ex-
ists if the conjunction exists when Hyperion moves from
apocenter to pericenter. In this scenario, Titan’s pull in-
creases the gravitational energy and angular momentum,
slowing the moon down. However, this effect still moves
the conjunction to apocenter.

A. Liberation Period

The underlying dynamics of the restricted three body
problem is complex, and it is difficult to find a closed
form expression for the period of liberations discussed
above. We shall follow the techniques outlined by Agol
et al. 2005. However, they provided only the general pro-
portionality between liberation period, eccentricity, and
the resonant frequency. We wish to take a step forward
and investigate the general proportionality factor, and
how it depends on the semi-major axis and if and how it
depends on the amplitude of oscillations.[1]
Unlike the main asteroid belt example, Titan’s circular

orbit is inside Hyperion’s orbit, which has a high eccen-
tricity. We shall choose units such that G = MSaturn =
rTitan = 1. Titan has a mass µ and it is in a 4 : 3 resonant
orbital with Hyperion. For the sake of generalization, let
their orbital resonances be j+1 : j. This is an example of
a first-order resonance and as shown in figure 3, it is one
of the strongest types. One further modification is that
instead of having a constant angular frequency, we shall
denote ωT and ωH for the average angular frequencies of
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Titan and Hyperion, respectively. We have:

ωT

ωH
=

j + 1

j
=

(
aH
aT

)3/2

(9)

We can rewrite the ratio as

aH/aT = 1 + r/aT ≡ 1 + x (10)

where r is the difference between the two semi-major
axes. Using a first-order expansion, we obtain:

ωT

ωH
=

j + 1

j
= (1 + x)

3/2 ≈ 1 +
3x

2
(11)

This first order expansion works because we are only in-
terested in an order of magnitude calculation. In most
cases, rH and rT are both significantly far away from the
central body, such as Saturn, so their percent difference is
negligible. In our case, it leads to a 1% error (x = 0.22)!
Rearranging and solving for x, we get:

x =
2

3j
(12)

Next, we calculate the time between conjunctions. We
can accomplish this by switching into a frame co-rotating
with Hyperion. In this new frame, Titan’s mean angular
velocity would be ωT − ωH , and the time it takes for
Titan to make one full revolution (equivalent to the time
it takes to meet up with Hyperion again) is:

Tconjunction =
2π

ωT − ωH
(13)

Let us assume that on average, the angle of Hyperion’s
orbit changes by ∆θ between successive conjunctions.
Thus, ∆θ is given by:

∆θ = ωHTconjunction =
2πωH

ωT − ωH
(14)

However, note that equation 9 no longer holds after Hy-
perion’s orbit changes by ∆θ. As discussed earlier, this is
because its period will slightly increase or decrease as an-
gular momentum is removed or added from the system.
After dividing, we write

ωH

ωT
=

j + 1

j + ϵ
(15)

where ϵ ≪ 1. Plugging this in:

∆θ =
2π

ωT /ωH − 1

=
2π

j+1
j+ϵ − 1

=
2π(j + ϵ)

1− ϵ

Using a first-order power expansion:

∆θ = 2πj + 2πjϵ (16)

Note that the first term is irrelevant, since m is an inte-
ger, the first-term tells us that Hyperion will return to
its original position a total of m times. However, we are
interested in the net change in its angle between succes-
sive conjunctions, and that’s given by the second term.
From now on, we can say:

∆θ = 2πjϵ (17)

Let the total angle subtended in one liberation be ϕ. Note
that this will be four times the angular amplitude. There-
fore, we need

N = ϕ/∆θ (18)

successive conjunctions in order to complete one full rev-
olution. Therefore, the total time to complete one cycle
is:

Tliberation = TconjunctionN =
ϕ

jϵ(ωT − ωH)
(19)

We can eliminate ωT by substituting in equation 11 and
equation 12. This gives us:

Tconjunction =
4π

3xωH
=

2πj

ωH
(20)

and

Tliberation = TconjunctionN =
2πj

ωH
· ϕ

∆θ
=

ϕ

ωHϵ
(21)

Following Agol et al, in the high eccentricity limit of Tis-
serand’s relation (this is satisfied for e > µ1/3, which is
valid in our case), we have:

∆(x2) = ∆(e2)

(2x)∆x = (2e)∆e

∆x =
e

x
∆e

Determining ∆e is a difficult task. One method pro-
posed by Agol et al is to use an average impulse-based
approach.[1] They claim the change in eccentricity be-
tween successive conjunctions is given by:

∆e/conjunction =
µ

x2
tencounter (22)

We have tencounter = 1 which is a reasonable assumption
due to the units we are working in, so the total change
in eccentricity is:

∆e =
µN

x2
(23)

From equation 12 we see that x ∼ 1
j . Plugging this in

gives:

∆x = eµj3N (24)



5

Using equation 18 we can substitute for N to get:

∆x =
eµj2ϕ

2πϵ
(25)

From Kepler’s third law and equation 9, we have:

j ∼ r
−3/2
H (26)

The differential change would be:

dj = ϵ ∼ −3

2
r
−5/2
H drH =⇒ ϵ ∼ −3

2
a−5/2∆x (27)

Dividing the two equations, taking the absolute value
gives:

ϵ

j
∼ 3∆x

2rH
(28)

Isolating for ∆x and setting it equal to 25 gives:

2ϵrH
3j

=
eµj2ϕ

2πϵ
=⇒ ϵ2 =

3eµj3ϕ

4πrH
(29)

Plugging it into equation 21 gives:

Tliberation =
2ϕ

√
πrH

ωH

√
3eµj3ϕ

(30)

We can simplify this even further if we substitute, ac-
cording to Kepler’s third law:

ωH = r−3/2 (31)

to get:

Tliberation =
2
√
πϕr2H√
3eµj3

(32)

Hyperion has an eccentricity of e = 0.123 [6], Titan
has a mass µ = 0.000237mSaturn, semi-major axis of
rH = 1.21rTitan.[3] We also have ϕ = 2.51 [2] and the
4:3 resonance means mj3. Plugging these values in, we
get:

Tliberation = 169.33

Using the natural units we’ve chosen, the orbital period
of Titan is:

TTitan = 6.283 → 15.95 days

Using this conversion factor, we get:

Tliberation = 1.18 years

Although the actual liberation period is t = 1.75 years,
this is surprisingly close![2] It is correct to an order of
magnitude, though it is an underestimation.

Multiple crude estimates and approximations and they
could have factored in varying amounts of error. How-
ever, the main source of error is probably from equation

22. It is unlikely that the change in eccentricity is directly
proportional to the impulse that is provided and the use
of the force as:

F = µ/x2

is overly generous. For one, this gives the force only clos-
est approach of the two orbits. It is unlikely that con-
junctions occur at these close approaches so the force is
an overestimation. Next, as the two moons move around
Saturn, the angles they make relative to their respec-
tive paths constantly change. Thus, the force calculated
would give us only the magnitude, not the strength in
any particular direction. Because of this, it is once again
another overestimation.
By overestimating the effects a single conjunction can

have, the final answer will show less conjunctions are
needed for the angle ϕ to be subtended and thus com-
plete one whole liberation cycle.

IV. GLOSSARY

Conjunction Point - The point at which all three
celestial objects are collinear.
Kirkwood Gaps - The gaps in the distribution of

asteroids in the Asteroid Belt with respect to their semi-
major axis.
Liberation Period - The period of time for the orbits

in a resonant system to return to its initial state.
Orbital Frequency - The amount of orbits completed

per unit of time.
Apocenter - The point in an elliptical orbit that is

farthest from the inner body.
Pericenter - The point in an elliptical orbit that is

closest to the inner body.

V. CONCLUSION

In this paper, we have analyzed and created a math-
ematical model for two cases of orbital resonance in the
Solar System: Kirkwood Gaps in the Asteroid Belt, and
Saturn’s two moons Hyperion and Titan. The former
was modeled as two concentric and circular orbits with
the outer mass, Jupiter, much larger than the inner mass,
an asteroid. By taking the average radial component of
force that Jupiter exerts on the asteroid at regular time
intervals, we found that, at certain resonant frequencies,
the average force is much stronger than at others. To a
degree of remarkable accuracy, these points corresponded
with the points at which the Kirkwood Gaps occur.
Secondly, the Saturn-Titan-Hyperion system was mod-

eled as a large mass, Titan, in a circular orbit, and a
smaller mass, Hyperion, in a larger and elliptical orbit.
During the subsequent 4:3 resonant motion, Hyperion
periodically gains and loses energy, causing its orbit to
change shape. The time for the system to completely re-
turn to its initial state, also known as the liberation pe-
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riod, was successfully approximated to an order of mag-
nitude. In the future, a viable alternative is utilizing
the Lagrangian planetary equations to provide a a more
accurate description of the motion of the system.
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